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Abstract We mined the most recent editions of the

BioMagResDataBank and the protein data bank to para-

metrize a new empirical knowledge-based chemical shift

predictor of protein backbone atoms using either a linear or

an artificial neural network model. The resulting chemical

shift predictor PPM_One accepts a single static 3D struc-

ture as input and emulates the effect of local protein

dynamics via interatomic steric contacts. Furthermore, the

chemical shift prediction was extended to most side-chain

protons and it is found that the prediction accuracy is at a

level allowing an independent assessment of stereospecific

assignments. For a previously established set of test pro-

teins some overall improvement was achieved over current

top-performing chemical shift prediction programs.

Keyword Protein chemical shift prediction �
Physics-based predictor � Backbone and side-chain

chemical shifts � Neural network � Database analysis

Introduction

Chemical shifts represent the most ubiquitous NMR infor-

mation of proteins. Chemical shifts of thousands of proteins

have been deposited in the BioMagResDataBank (BMRB)

(Ulrich et al. 2008). In addition to assignment purposes,

chemical shift information has found wide-spread use in

several protein NMR areas. These include the assessment of

the propensity of protein segments to adopt various types of

secondary structure (Shen and Bax 2013; Shen et al. 2009a;

Wang and Jardetzky 2002; Wishart and Case 2001; Wishart

and Sykes 1994), the determination or refinement of 3D

protein structures (Cavalli et al. 2007;Rosato et al. 2012; Shen

et al. 2008, 2009b; Wishart et al. 2008), the extraction of site-

specific order parameters as measures of local dynamics

(Berjanskii and Wishart 2006), the validation and improve-

ment of molecular dynamics simulations and protein force

fields (Li and Brüschweiler 2010, 2011), the optimization of

enhanced conformational sampling techniques (Markwick

et al. 2010), the comparison of protein structure and dynamics

in solution and in crystals (Robustelli et al. 2012), and the

prediction of rotating frame relaxation data (Xue et al. 2012).

Most of these applications require the accurate prediction of

chemical shifts from protein structures. Because of the

quantum-chemical origin of chemical shifts, they have a

rather complex dependence on molecular structure, which

makes their accurate prediction a formidable challenge,

especially for biomacromolecules such as proteins.

One of the early approaches to chemical shift prediction

is based on approximate analytical relationships derived

from quantum-chemical calculations, which forms the basis

of the SHIFTS program (Xu and Case 2001, 2002). With the

rapid expansions of both the BMRB (Ulrich et al. 2008)

database for protein chemical shifts and the protein data

bank (PDB) (Berman et al. 2000), empirical knowledge-

based approaches have been developed in recent years that

parameterize chemical shift hyper-surfaces as a function of

atomic coordinates (Kohlhoff et al. 2009; Lehtivarjo et al.

2009, 2012; Li and Brüschweiler 2012; Neal et al. 2003;

Sahakyan et al. 2011a, b; Shen and Bax 2007, 2010; Xu and
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Case 2001, 2002). At room temperature, the experimental

chemical shift of a given nucleus reflects the Boltzmann-

weighted average of the ‘instantaneous’ chemical shifts of a

large number of conformational substates. Therefore,

chemical shift predictors that are parametrized based on

experimental chemical shifts of proteins in solution against

static crystal structures implicitly include some degree of

dynamics averaging (Lehtivarjo et al. 2009, 2012; Li and

Brüschweiler 2012). In addition, some predictors, such as

SPARTA?, include S2 order parameters that are predicted

from local interatomic contacts to account for some

dynamics averaging effects (Shen and Bax 2010; Zhang and

Brüschweiler 2002). When a realistic ensemble of a protein

is available, one can calculate chemical shifts of each static

structure and take the ensemble average to obtain the pre-

dicted values. By fitting the ensemble averaged, back-cal-

culated chemical shifts against experimental values, a set of

‘static’ model parameters can be obtained. Both 4DSPOT

(Lehtivarjo et al. 2009, 2012) and PPM (Li and Brüsch-

weiler 2012) follow this strategy by parametrizing chemical

shifts using conformational ensembles generated by MD

instead of static protein structures. In other cases, structure-

based prediction has been augmented with sequence-based

chemical shift information (Han et al. 2011; Wishart et al.

1997).

While most of the developments in protein chemical shift

prediction have focused on backbone nuclei, amino-acid

side-chain chemical shifts are also informative reporters on

protein structure and dynamics (Sahakyan et al. 2011b).

Several software packages are currently available for the

prediction of at least some of the side-chain 1H chemical

shifts (Han et al. 2011; Lehtivarjo et al. 2009; Neal et al.

2003; Sahakyan et al. 2011a, b; Xu and Case 2001, 2002).

The steady expansions of both the BMRB and PDB

databases in recent years provide the means to continu-

ously improve empirical knowledge-based chemical shift

prediction by using a larger number of descriptors of

protein structure, e.g. higher order Fourier series expan-

sions in dihedral angle space. The present work makes

extensive use of this possibility. Moreover, the prediction

has been expanded to most protein side-chain protons. To

distinguish this new chemical shift predictor from our

ensemble based predictor PPM (Li and Brüschweiler

2012), the new predictor and its underlying software is

called PPM_One.

Method

BMRB and PDB input file lists

An up-to-date list of protein chemical shifts of the

BMRB was obtained by downloading all chemical shift

files in the NMR-STAR 2.1 format (Ulrich et al. 2008).

For each file, we checked the BMRB ‘‘System_physi-

cal_state’’ and the ‘‘Mol_system_component_name’’

information to ensure that the protein was assigned in its

native apo state, i.e. in the absence of ligands. All entries

that did not fulfill these properties were removed.

Intrinsically disordered proteins have not been excluded

at this stage, but they are eliminated in subsequent steps.

Next, we checked for each BMRB entry all PDB files

from the PDB database (Berman et al. 2000) whether

they matched the sequence of a corresponding BMRB

chemical shift file, and selected only those proteins

solved by X-ray crystallography with a resolution of

2.0 Å or better. In this process, PDB files with missing,

mutated, or otherwise modified residues (except for

residues in the two terminal regions) were excluded. PDB

files with bound ligands or in complex with other pro-

teins were kept after the ligands and interacting proteins

were removed. PDB files that contained multiple asym-

metric chains were split into multiple files. For most

BMRB entries, there was usually more than one matching

PDB file. We then employed the SHIFTS (Xu and Case

2001, 2002) program to predict chemical shifts of all

these PDB files and selected the one that had the lowest

chemical shift root-mean-square deviation (RMSD),

which is the average RMSD value of all predicted Ca,
Cb, and C0 chemical shifts with respect to experiment. In

rare cases, the lowest chemical shift RMSD was larger

than 3 ppm, which may indicate an unusual protein

geometry, miscalibration, or misassignment. These

BMRB–PDB pairs were removed. We then did sequence

alignment for all remaining pairs and removed all

homologs whose sequence similarity was larger than

50 %. This left us with 405 BMRB–PDB pairs, which are

listed in Supporting Information Table S1 and were uti-

lized to train PPM_One. Among these, eight proteins that

had been selected for testing in a previous study (Shen

and Bax 2010) were used for subsequent tests. These

eight proteins were not used during any of the training

stages. The sequence similarity between proteins in the

training set and the test set was less than 20 %. To

correct for possible referencing errors, we applied refer-

encing corrections to carbon chemical shifts of all PDB

BMRB pairs by comparing the deposited data with the

predictions from SPARTA?. For each protein, the

experimental chemical shifts were subjected to an offset

to optimally match the SPARTA? prediction. In this

process, all carbon chemical shifts of the same protein

were uniformly shifted. Using PPM_One for re-refer-

encing (in an iterative way) or using shifts, instead of

SPARTA?, did not affect the results. Nitrogen and

hydrogen chemical shifts were not corrected because the

referencing corrections were found to be very small.
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Linear model for backbone chemical shift prediction

When a part of a protein is highly flexible adopting many

different conformations, the experimental chemical shifts

tend to approach the so-called random coil value. It has

been shown that the explicit inclusion of local flexibility

into chemical shift prediction improves the prediction

accuracy (Shen and Bax 2010). To account for this effect,

we expressed the predicted chemical shifts dprek as follows:

dprek ¼ dpre
0

k f ðCkÞ þ d0kð1� f ðCkÞÞ ð1Þ

dpre
0

k ¼ p
ring�current
k dring�current

k þ p
magn�aniso
k dmagn�aniso

k

þ pdihedralk ddihedralk þ ph�bond
k dh�bond

k þ p
seq
k dseqk ð2Þ

f ðxÞ ¼ 1� exp �
2 x� xmin;k

� �

xmax;k � xmin;k

� �� �

1þ exp �
2 x� xmin;k

� �

xmax;k � xmin;k

� �� �� ð3Þ

dpre
0

k is obtained by expressing the chemical shift as a linear

combination of different structural descriptors with weights

pk. These terms will be described below. Subscript k

accounts for different types of nuclei, namely Ca, Cb, C0,
Ha, N, and HN. Ck is the contact sum, which has been

shown to be able to predict residue flexibility from an

average structure quite well (Li and Brüschweiler 2009;

Zhang and Brüschweiler 2002). The sigmoid function f(x)

gradually converts dpre
0

k to the ‘‘chemical shift offset’’ d0k
when the contact sum Ck approaches xmin,k.

Chemical shifts are sensitive to chemical substituent

effects, which can be accounted for by the inclusion of a

correction term that depends on the type of the amino acid

of interest and the amino acids that directly precede and

follow. With 20 different amino acid types, the sequence-

dependent chemical shift parametrization contains 60

parameters (descriptors).

Backbone and side-chain dihedral angles of consecutive

residue triples, i.e. the ‘‘previous’’, ‘‘current’’, and the

‘‘following’’ residue, provide a detailed description of the

local chemical environment and they are usually important

for chemical shift predictions (Kohlhoff et al. 2009; Neal

et al. 2003; Shen and Bax 2010). Fourier series expansion

up to 3rd order in the dihedral angles of the current residue

were employed both for cosine and sine functions with the

six Fourier coefficients (prefactors) serving as fit parame-

ters. This leads to six descriptors for each dihedral angle.

To optimize the fit stability, the first two side-chain dihe-

dral angles were included for amino acids with two or more

side-chain dihedral angles. Because the different chemical

properties of the 20 amino-acid types affect their chemical

shifts differently, the dihedral angle descriptors were

treated for each amino-acid type separately. Together, there

is a total of up to 480 descriptors for the dihedral angle

contribution of the current residue (20 amino-acid types, up

to 4 dihedral angles (u, w, v1, and v2) with 6 Fourier

coefficients per dihedral angle). In addition, Fourier series

expansions up to 2rd order of the backbone dihedral angles

and the first side chain dihedral angle of the previous and

following residues were also employed. Following a sim-

ilar strategy as for the current amino acid, the dihedral

angle descriptors of the previous (following) residue were

treated differently according to amino-acid type of previ-

ous (following) residue. Note that these dihedral angle

descriptors did not depend on the amino-acid type of the

current residue. The dihedral angle contribution for the

previous and following residue each contains 240

descriptors.

The effect of backbone hydrogen bonds on chemical

shifts was parameterized in terms of the inverse of the

distance rOH between the acceptor O and donor HN atoms.

These contributions were set to zero if rOH[ 3 Å or either

of the angles formed by the NHNO or HNOC0 atom triples

was smaller than 120�. To improve the stability of the fits,

the hydrogen bond descriptors were treated as amino-acid

type independent. Because each residue contained both a

donor and an acceptor group, hydrogen bond terms were

parametrized by six descriptors.

Ring current and magnetic anisotropic effect were only

applied to proton chemical shifts. Ring current effects

dðkÞring�current could arise from five different aromatic amino

acid rings, namely the ones in Phe, Tyr, His, and the 5-ring

and 6-ring of Trp (Trp-5, Trp-6). This geometric descriptor

is defined as (Haigh and Mallion 1972, 1979; Osapay and

Case 1991; Sahakyan et al. 2011a)

fring current ¼
X

p;q

Spq
1

r3p
þ 1

r3q

 !

ð4Þ

where the sum includes all adjacent atom pairs in the ring.

rp and rq are the distances between neighboring ring atoms

p and q to the proton and Sij is the area of the triangle

formed by atom i, atom j and the projection of the proton

on the aromatic ring (denoted below as ‘‘o’’). The sign of

Sij is determined whether the vector product toi � tij is

parallel (positive sign) or antiparallel (negative sign) to the

ring normal defined by t12 � t23, where toi is the vector

pointing from o to atom i and and tij as the vector pointing

from atom i to atom j. Magnetic anisotropy effects

dðkÞmagn�aniso were calculated using the axially symmetric

model by Osapay and Case (1991) following McConnell’s

(1957) formulation of anisotropy effects of peptide groups:

fmagn�aniso ¼
1

r3
3 cos2 h� 1
� �

ð5Þ
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where r is the distance from the proton to the peptide amide

group (formed by the OC0N atoms) and h is the angle

between the vector joining the proton to the amide group

and the amide group normal. Similar to Sahakyan et al.

(2011a), an analogous treatment is employed for the OCN

side-chain groups of residues Asn and Gln, for the OCO

side-chain groups of Glu and Asp, and for the NCN side-

chain group of Arg. Ring current and magnetic anisotropy

effects totally contributed 9 descriptors.

The parameters xmin,k and xmax,k of Eq. (3) enter f ðCkÞ
and 1� f ðCkÞ in Eq. (1) in a non-linear way and, hence, they
cannot be optimized by linear regression. Therefore, to obtain

optimal xmin and xmax values we first did a grid search for

each atom type by minimizing the RMSD between dprek and

dexpk . Next, all prefactors [pk in Eq. (2)] together with d
0
k were

determined by linear regression with respect to dexpk and the

RMSD between dexpk and dprek was determined. In our linear

regression procedure, 10 % of the data points were randomly

excluded and used only for validation. To make the predictor

more robust, this process was repeated 1000 times and the

model parameters obtained from all fits were averaged.

Artificial neural network based prediction

A single hidden layer feed forward artificial neural network

(ANN) was applied to predict chemical shifts of all backbone

sites, following ideas behind PROSHIFT (Meiler 2003) and

SPARTA? (Shen and Bax 2010). Our input layer included

113nodes for non-proton atomsand122nodes for protons.The

first 60 nodes accounted for the triple residue sequence. As in

SPARTA? we utilized an amino acid similarity table, which

helped improve the prediction accuracy of the ANN slightly.

Thew, v1, v2 dihedral angles of the previous residue,/,w, v1,
v2 dihedral angles of the current residue, and/, v1, v2 dihedral
angles of the following residuewere included to account for the

local structural information. More specifically, Fourier series

expansions up to second order of each of these dihedral angles

were included as elements in the input layer. By contrast, for

SPARTA? only the first order Fourier coefficients are inclu-

ded. Hydrogen bond information of the CO group of the pre-

vious residue, the NH group of the following residue and both

groups of the current residue were also included in the input

layer. Each of the four groups contains three parameters,

namely the inverse of the hydrogen bond length (H…O dis-

tance) and the cosines of the NHO and HOC angles. For the

prediction ofCa, Cb, andC0 chemical shifts, the contact sumof

the corresponding atom was included as a parameter; for the

prediction ofN, HN, Ha chemical shifts, theCa contact sum of

the same residue was used instead. For the Ha and HN atoms,

nine additional parameters were included for the ring current

and magnetic anisotropic effects.

The hidden layer of our ANN included 25 neurons. The

transfer function from the input to the hidden layer was

f ðxÞ ¼ ð1� e�2xÞ=ð1þ e�2xÞ. And the transfer function

from the hidden layer to the output layer was f ðxÞ ¼ x. A

flowchart of the ANN is depicted in Fig. 1b of the work by

Shen and Bax (2010). During our ANN training process,

20 % of randomly picked data points were used for vali-

dation to prevent over-training (overfitting). The Leven-

berg–Marquardt optimization algorithm was used during

training. To reduce the statistical uncertainties in the model

parameters and improve the prediction performance, the

ANN was trained 12 times using different initial parame-

ters and the averages of the output model parameters were

taken for chemical shift prediction. Averaging over a larger

number of training calculations provides no further

improvement.

Side-chain proton chemical shifts prediction

Our side chain proton chemical shift predictor mainly

depends on the linear combination of ring current effects,

magnetic anisotropic effects, and an overall chemical shift

offset. For all side chain Hb atoms, Fourier series expan-

sions up to 2rd order of the backbone dihedral angles of the

same residue were also included. The prediction is based

on

dprem ¼ pring�current
m dring�current

m þ pmagn�aniso
m dmagn�aniso

m

þ pdihedralm ddihedralm þ d0m ð6Þ

where index m reflects each different proton type. The

dihedral angle terms are used only for Hb proton chemical

shifts.

For many geminal proton pairs, such as Hb2 and Hb3,
the BMRB indicates that they were stereospecifically

assigned (i.e. they were annotated with ambiguity code 1).

To check the consistency of these specific assignments

with the chemical shift prediction according to Eq. (6), we

performed two sets of calculations. In the first set, the mean

chemical shift of geminal proton pairs was predicted and

compared with the experimental mean chemical shift,

while for the second set individual protons were predicted

and compared with the corresponding experimental

chemical shifts based on their stereospecific assignments.

Based on statistical arguments, the first set should lead to a

smaller RMSD than the 2nd set. For the purpose of per-

formance comparison we correct for this fact by using a

‘‘relative prediction error’’, which is given by the RMSD of

the prediction with respect to experiment divided by the

standard deviation of the experimental chemical shifts

themselves. If the prediction of the first set improved

merely because of statistical averaging effects, the relative

prediction error of the two sets should be similar.

For each proton type, the corresponding fitting param-

eters pk in Eq. (6) were determined by linear regression.

406 J Biomol NMR (2015) 62:403–409
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For many proton types, the limited availability of experi-

mental data caused the fitting to become unstable. This

issue was addressed by treating the fit parameters

pring�current and pmagn�aniso independently of the proton-

type.

Result and discussion

Prediction accuracies of backbone atoms from both our

linear model and the ANN model are displayed in Fig. 1

(the raw data are listed in Table S2 of the Supporting

Information) in comparison with SPARTA? and

SHIFTX2 (without using its sequence-based predictor).

The reported chemical shift RMSDs correspond to aver-

ages from the eight test proteins used previously (Shen and

Bax 2010). Overall, our linear model of PPM_One

achieved an accuracy that is comparable with the one of

SPARTA? for Ca, Cb, and Ha atoms. However, the pre-

diction accuracies of other atoms were slightly worse than

SPARTA?, possibly because of non-linear contributions to

their chemical shifts from the hydrogen bond. The linear

model without contact sum correction is slightly worse. By

contrast, our ANN model achieved consistently better per-

formance than SPARTA? for all atoms except the C0

carbonyl carbons. However, since C0 chemical shifts are

only available for four of the eight proteins in the test set,

the statistical uncertainty for these atoms is larger than for

the other backbone atoms. Our ANN model also provides a

slight improvement over SHIFTX2.

The histogram in Fig. 2 shows the relative prediction

errors for the average chemical shift of geminal protons

(set 1, blue bars) and for individual protons using the

stereospecific assignment information from the BMRB (set

2, red bars). The significantly reduced relative prediction

error of set 1 over set 2 suggests that a non-negligible

number of the geminal protons reported in the BMRB have

been stereospecifically misassigned (despite the fact that

they are annotated with ambiguity code 1), consistent with

previous findings (Borowski 2012; Williamson and Asa-

kura 1992). The same behavior has been observed when

chemical shifts were predicted using the program SHIFTS

(Xu and Case 2001, 2002). Based on these results, it is

recommended to use the average chemical shift of geminal

proton pairs, rather than individual chemical shifts, for

back-calculation purposes to prevent the inflation of side-

chain chemical RMSDs due to wrong stereospecific

assignments. These results indicate that the prediction

accuracy of PPM_One of these side-chain proton chemical

shifts is at a level where it can be directly used to inde-

pendently confirm stereospecific assignments for proteins

with known structure (Nilges et al. 1990).

The prediction accuracy of side-chain protons is depic-

ted in Fig. 3 (raw data are listed in Table S3), in compar-

ison with CH3Shifts (Sahakyan et al. 2011a) (methyl

protons only), ArShifts (Sahakyan et al. 2011b) (aromatic

protons only), SHIFTS (Xu and Case 2001, 2002), and the

RMSD of the experimental data alone. Because the eight

protein test set did not include a sufficiently large number

of data points for many of the proton types to achieve

reliable statistics, the reported RMSD of each proton type

was calculated from all proteins of the training set. To

avoid overfitting, special attention was given to the sta-

bility of the fits during the training process and was shown

not to be a problem because of the limited number of terms

included for the side-chain chemical shift prediction. A list

of protons that were trained globally rather than

Fig. 1 Performance of the prediction of backbone chemical shifts by

PPM_One (blue and black bars for liner and ANN models,

respectively) compared with SPARTA? (red bars) and SHIFTX2

(green bars). The chemical shifts of eight test proteins were used (see

text)

Fig. 2 Histogram of relative chemical shift prediction error of model

1 (blue bars) and model 2 (red bars) for 52 (model 1) or 78 (model 2)

types of geminal protons, respectively, of all training set proteins.

Model 1 predicts the mean chemical shift of geminal protons while

model 2 predicts the chemical shifts of individual protons. The

relative prediction error is defined as the RMSD of the prediction with

respect to experiment divided by the standard deviation of the

experimental data set itself
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individually is given in the Supporting Information. The

prediction accuracy varies for different side-chain proton

types, whereby Hb protons were predicted with higher

accuracy than the other side-chain protons. In principle,

local electric fields can also have an effect on proton

chemical shifts. However, inclusion of such effects in our

prediction showed no improvement (Li and Brüschweiler

2012). Certain protons have a very limited number of

experimental values and proved to be hard to predict using

our model, hence they were excluded. These include all

side-chain O–H hydroxyl and carboxyl protons, Hc of

Cysteine, He of Glutamine, Hf and He of Lysine, He of

Arginine and He1, He2, Hd1, Hd2 ring protons of Histi-

dine. The large prediction errors of O–H protons might be

related to their participation in possible hydrogen-bonding

effects. For Cysteines, disulfide bonds cannot be inferred

from the PDB structures with good reliability, which

introduces a significant uncertainty in the prediction of Cys

Hc chemical shifts. For the three often positively charged

amino acids (Lys, Arg, His), our model did not include any

protonation state information and possible water mediated

interactions, which might have contributed to the low

prediction quality for the protons listed above.

In summary, the new PPM_One chemical shift pre-

dictor provides an improved empirical chemical shift

prediction of backbone atoms and side-chain protons from

single static protein structures. PPM_One is readily

applicable to a wide range of biophysical NMR applica-

tions that rely on chemical shifts predicted at the pre-

sently highest achievable accuracy. PPM_One also offers

a useful reference for the assessment of the quality of

predicted chemical shifts for comparison with chemical

shifts predicted from conformational ensembles. The

ability of PPM_One to predict chemical shifts of most

side-chain protons is expected to further broaden the

scope of chemical shift applications. The integrated PPM/

PPM_One web server, the source code including all fitting

parameters, and a downloadable executable program are

available at http://spin.ccic.ohio-state.edu/index.php/ppm.
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